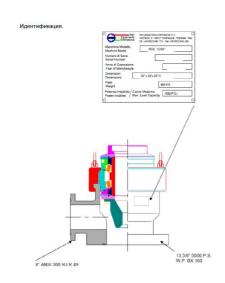


PNG Technologies equipment for pressure and underbalanced drilling technology (mpd/ubd)

Оборудование PNG Technologies для технологии бурения с управляемым давлением и на депрессии (mpd/ubd)

Оборудование PNG Technologies для технологии бурения с управляемым давлением и на депрессии (mpd/ubd)

«ПНГ Технологии» предлагает: эффективные технологические решения, основанные на использовании оборудования передовых мировых производителей для бурения скважин в сложных горно-геологических условиях. Суть предлагаемых технологий состоит в использовании набора оригинального специального устьевого оборудования, манифольдов, и программного обеспечения. Наши технологии не заменяют, а скорее дополняют арсенал операторов или подрядчиков новыми высокоэффективными средствами при бурении «сложных» скважин.


Комплект оборудования состоит из:

- Роторный устьевой герметизатор RCD (с дистанционным или механическим зажимом)
- Блок дроссельного манифольда
- Пульт управления системой
- 4-х фазный сепаратор бурового раствора
- Блок грубой очистки раствора $V=30 \text{ м}^3$
- Блок рабочих емкостей V=120м³
- Факельная установка
- Азотно-компрессорная установка

Вращающийся превентор PNG Technologies Rotating Control Devices (RCD) - предназначен для автоматической герметизации устья скважины вокруг любой части бурильной колонны, в том числе ведущих, утяжеленных, насосно-компрессорных, а также замковых соединений бурильных труб, при ее вращении, расхаживании, наращивании и выполнении спуска-подъемных операций.

технические характеристики в исполнении №1

Диаметр условного прохода, мм - 350

Нижний фланец - 13 5\8"x5000psi (bx160)

Боковой фланец – ANSI 300 RTJ 8"

Боковой порт с резьбой - 2" (NPT 2")

Максимальная скорость вращения об/мин - 200

Макс. рабочее давление в статическом режиме,

10,5(1500) MΠa(PSI)

Макс. рабочее давление в динамическом режиме,

6,8(1000) МПа(PSI) при 80 об/мин

Материал смазки вращающегося узла – масло

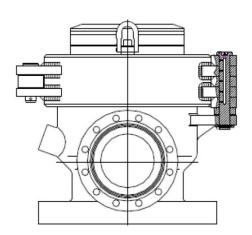
Механизм зажима вращающейся головки -

Механический

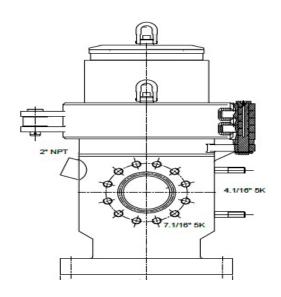
Рабочая среда - вода, высококонцентрированный солевой раствор (рапа), буровой раствор, нефть, газ,

конденсат.

Применение в средах с H2S и C02, % - до 6% (K2)


Температура окружающей среды при работе, °С –

 O_T -50 до + 50


Опционально: возможность адаптации под оборудование

заказчика

технические характеристики в исполнении №2

Диаметр условного прохода, мм - 350

Нижний фланец - 13 5\8"x5000psi (bx160)

Боковой фланец №1 - 4 1\16"x5000psi (r39)

Боковой фланец №2 - 7 1\16"x5000psi (r46)

Боковой порт с резьбой - 2" (NPT 2")

Максимальная скорость вращения об/мин - 200

Макс. рабочее давление в статическом режиме,

21(3000) MΠa(PSI)

Макс. рабочее давление в динамическом режиме,

10(1500) МПа(PSI) при 80 об/мин

Материал смазки вращающегося узла – масло

Механизм зажима вращающейся головки -

Механический, Гидравлический

Рабочая среда - вода, высококонцентрированный солевой раствор (рапа), буровой раствор, нефть, газ,

конденсат.

Применение в средах с H2S и C02, % - до 6% (K2)

Температура окружающей среды при работе, ${}^{\circ}C$ –

Oт -50 до + 50

Опционально: возможность адаптации под

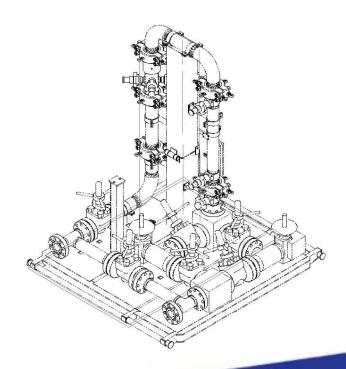
оборудование заказчика

Наши преимущества:

- Износостойкий уплотнительный элемент позволяет использовать оборудование в условиях большинства агрессивных сред: вода, высококонцентрированный солевой раствор (рапа), буровой раствор, нефть, газ, конденсат.
- В зависимости от технологии бурения, выходящий из скважины поток промывочной жидкости направляется через боковое выходное отверстие корпуса к наземной системе сепарации или непосредственно на блок системы очистки буровой установки;
- Боковой порт позволяет подключать систему автоматического долива промывочной жидкости непосредственно к корпусу превентора, что повышает безопасность проведения работ.
- Уникальная конструкция уплотнительного элемента позволяет использовать оборудование на буровых установка оборудованных роторным и верхним приводами.
- Наши специалисты спроектировали подшипниковый узел с учетом опыта и опираясь на самые продвинутые технологические решения, он больше не нуждается в дополнительном охлаждении.
- Компактная конструкция обеспечивает простоту и легкость монтажа.
- Применение нашего оборудования не требует дополнительного обучения персонала заказчика

Блок дроссельного манифольда

Блок дроссельного манифольда предназначен для управления потоком жидкости и точного контроля забойного давления MPD в процессе бурения с управляемым давлением и обеспечивает наиболее оптимальное размещение всех компонентов для контроля противодавления на поверхности во время операций. Коллектор MPD предназначен для временного размещения на наземных буровых установках в составе системы MPD.

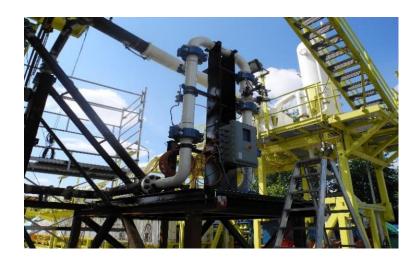

Регулируемый дроссель имеет следующие характеристики:

Номинальное давление : 5000psi (35МПа)

Предполагаемый предел расхода: от 700 л/мин до 4500 л/мин

Впускные/выпускные соединения: 4 1/16" АРІ 16А

Материал: AISI 4130



Расходомер Вентури

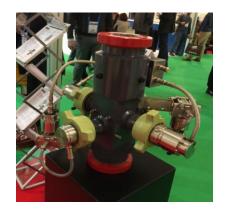
Расходомер Вентури – устройство для измерения расхода или скорости потока жидкости, представляющая собой инновационный расходомер бурового раствора разработанный специально для контроля многофазной среды (нефть, вода, газ) с высоким содержанием взвешенных частиц(песка и шлама).

Расходомер Вентури - это конструкция расходомеров IN и OUT, подходит для применения с системой бурения с регулированным давлением (БРД).

Измерения потока жидкости достигается путём перепада давления между входящим и выходящим потоком и измерением абсолютного давления. Точность датчика установленного для определения вышеупомянутых переменных в различных условиях, а так же точность расчётов обеспечивается с помощью опытных гидродинамических моделей.

Расходомер Вентури

Технические характеристики расходомера Вентури:


Диапазон применения – измерение массового расхода и плотности газа, жидкости с высоким содержанием твердой фракции Измеряемые значения – скорость потока, удельный вес и плотность, температура в однофазном и многофазном потоке Рабочая температура – от -40 °C до 130°C

Максимальное рабочее давление – 35 Мпа

Придел расхода – 0 - 4 500 л/мин

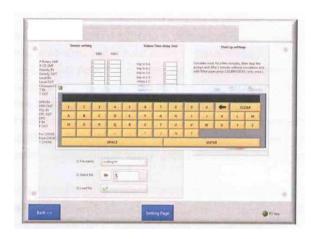
Плюсы расходомера Вентури:

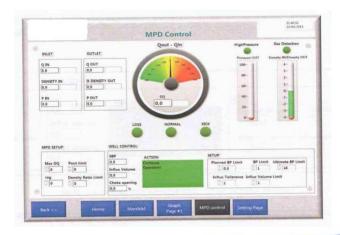
- Высокая точность измерения скорости в однофазном и многофазном потоке бурового раствора.
- Практически полное отсутствие потери давления в трубопроводах.
- Высокая надёжность, измерительная плоскость практически не изнашивается и не засоряется различными отложениями, детали отличаются простатой изготовления.
- Расходомер рассчитан на высокое давление (35 Мпа), что позволяет также устанавливать его на нагнетательной линии буровых насосов.
- Расширенный диапазон расхода жидкости от 0 до 4 500 литров в минуту.
- Имеет возможность использования одной и той же технологии для измерения расхода на входе и на выходе из трубопровода, с последующим более точным значением дифференциального расхода.
- Обеспечивает надёжные и точные показания при изменении плотности бурового раствора в процессе бурения и не требует дополнительной калибровки.

MPD Control

Система MPD управляется с панели управления контроллером, на главной странице MPD Control можно проверить состояние системы и узнать, происходит ли какая-либо аномалия на этапе бурения.

Все сигналы и измерения интерпретируются бурильщиком, исходя из состава скважины и режимов бурения.


Система kick/loss и Delta Q позволяет увидеть разницу дебита на входе и выходе из скважины:


- Индикатор "kick" проявление;
- Индикатор "loss" поглощение;
- "Max DQ" выбор максимального предела давления;

Система MPD объединяет все полученные параметры, уже рассчитанные данные и весь диапазон функций с помощью алгоритма. Система предлагает бурильщику варианты действий при обнаружении: поглощения, проявления или ненормального давления в скважине, так же бурильщик имеет возможность самостоятельно принимать решение и действовать в ручную.

Система MPD позволяет изменить и выбрать измерительный блок.

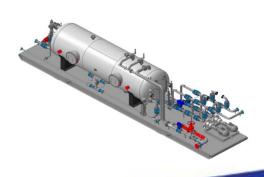
Все полученные данные можно записать в файл Excel и загрузить на USB.

Емкостной блок

Закрытая циркуляционная система комплекса MPD\UBD включает в себя комплекс элементов, связанных с движением, распределением, обработкой, отводом и хранением жидкости, необходимой в процессе бурения скважин с управляемым давлением.

В составе циркуляционной системы используется следующее оборудование:

- 4-х фазный сепаратор
- Система очистки раствора с сито-гидроциклонной установкой и горизонтальной центрифугой (объем по требованию заказчика)
- Блок технологических емкостей (объем по требованию заказчика)


Сепаратор газожидкостной 4-х фазный

Блок предназначен для разделения поступающей из скважины газонефтяной смеси на газ, пластовую воду, нефть и механические твердотельные загрязнения, с последующей подачей нефти далее в систему и замером газовой фазы. 4-х фазный сепаратор применяется: а)для разделения нефтяной эмульсии: на очищенную и дегазированную нефть; на подтоварную воду; на газ, сжигаемый в факеле; на шлам от разбуренной породы. б)для получения данных о породах, через которые ведётся бурение скважины.

Состав блока 4-х фазного сепаратора:

В состав блока входят:

- мультифазный сепаратор;
- пробоотборник шлама для анализа разбуренной породы;
- насос для отвода шлама;
- насос центробежный для отвода нефти из нефтяной секции сепаратора;
- насос центробежный для отвода воды из водяной секции сепаратора;
- трубопроводная обвязка блока сепаратора;
- система КИП и А для управления работой блока сепаратора;
- шкафы силовые и системы управления;
- программное обеспечение для управления работой блока

Наименование показателя	Ед. изм.	Значение показателя	
Расчетное давление	МПа	2,1	
Рабочее давление	МПа	2	
Технологическое давление	МПа	от 0,27 до 1,79	
Пробное давление (при гидроиспытаниях)	МПа	2,76	
Температура расчетная	°C	от минус 60 до 50	
Температура рабочая	°C	от 15 до 20	
Производительность по газу	н.м3/ч	от 600 до 7 200	
Производительность по нефти	м3/ч	от 28,8 до 136,8	
Производительность по воде	м3/ч	до 2	
Расчетный срок службы аппарата	лет	20	
Прибавка для компенсации коррозии с учетом срока службы	мм	2	
Марка основного матернала корпусных деталей	22	сталь 09Г2С	
Марка основного материала внутренних элементов	=	сталь 12X18H10T	
Наименование рабочей среды	-	Газонефтяная смесь	
Фазовое состояние рабочей среды	6	газ, жидкость	
Группа аппарата по ГОСТ 34347-2017	20	1	
Группа среды по ТР TC 032/2013	~	1	
Категория взрывоопасной смеси по ГОСТ 30852.11-2002		IIA	
Группа взрывоопасной смеси по ГОСТ 30852.5-2002	6	T3	
Класс опасности по ГОСТ 12.1.007-76	10	4	
Класс взрывоопасной зоны по ГОСТ 30852.9-2002		B-1r	
Потребляемая мощность электрооборудования	кВт	92,92	
Габаритные размеры, ДхШхВ	мм	10800x8883x2740	
Масса Блока	KT	20 800	

Факельная установка

Факельная установка предназначена для бездымного сжигания постоянных, аварийных и периодических факельных сбросов.

Установка факельная состоит из ствола факельного и оголовка факельного. Оголовок крепится на верхнем фланце ствола факельного и представляет собой корпус с расположенным внутри плавающим клапаном. Внутренние поверхности раструба корпуса и наружные поверхности плавающего клапана формируют динамический щелевой газовый затвор. Динамический щелевой газовый затвор формирует и направляет поток газа и предотвращает попадание воздуха внутрь факельного ствола. Оголовок оснащён двумя устройствами розжига с установленными на них эжекторами, устройства розжига одновременно выполняют функцию дежурных горелок. Устройства розжига имеют места для установки средств автоматического контроля горения. Ствол факельный, состоит из цилиндрической опоры, факельной трубы с закреплёнными на ней лестницами и площадками обслуживания, на стволе также закреплены трубопроводы подвода газа к дежурным горелкам и горючей смеси к устройствам розжига, а также устройства воспламенения горючей смеси. В нижней части ствола имеются: штуцер подвода факельных газов, смотровой лючок (закрыт крышкой), штуцер для замера давления (закрыт пробкой), штуцер для отбора проб (закрыт пробкой). Для устойчивости факельный ствол раскрепляется тремя оттяжками.

Азотно-компрессорная установка

Азотная компрессорная станция используемая при бурение с управляемым давлением.

Азотная установка имеет следующие характеристики:

Давление азота, изб., кгс/см2 – 250 Производительность азота (при норм.усл), м3/мин – 10 Концентрация азота на выходе, % - до 96 Исполнение – шасси, стационар

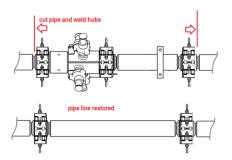
Опционально:

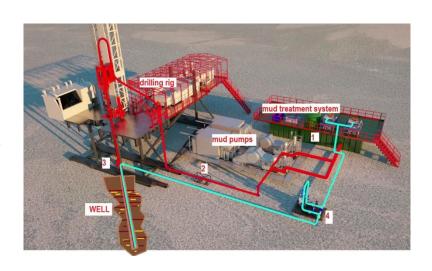
- Электро-привод компрессора
- Дублирующий компрессор
- Раздельные ресиверы

Бурение с контролируемым давлением

1. Плотномер/уровнемер:

Приборы устанавливаются в ёмкостном парке и подключены к панели управления.


2. Расходомер:


Устанавливается непосредственно на манифольдную линию с помощью хомута API n^o2, что позволяет более точно измерить поток жидкости.

3. PNG Technologies Rotating Control Devices (RCD) Устанавливается на устье скважины для поддержания давления

4. Регулированный дроссель

Монтируется между устьем скважины и системой очистки бурового раствора. Имеет обводную линию с 2 задвижками позволяющие отсечь расходомер, плотномер, дроссельный клапан для проведения очистки или обслуживания. Блок HPU собирает и управляет всеми данными датчиков. Дроссельный клапан приводится в действие воздухом и управляется электрически или вручную.

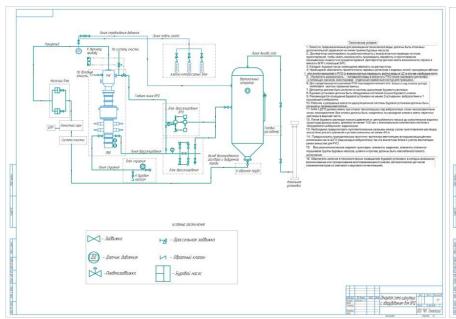
Pipe Size	Int. Ø mm	Thickness mm	Rating PSI	Connection type	Length /Height mm	Width Ø mm	Approx. weight Kg
4" XXS	80,06	17,12	API 10000	API HUB CONN. N°6 4 1/16" IHC	650	1000	240
5" XXS	103	19,5	API 10000	API HUB CONN. N°6 4 1/16" IHC	650	1000	173
6" XXS	124,4	21,95	API 10000	API HUB CONN. N°10 7 1/16" IHC	850	1020	870
8" XXS	174,7	22,2	API 10000	API HUB CONN. N°10 7 1/16" IHC	1200	1070	1100
10" XXS	222,2	25,4	API 10000	API HUB CONN. N°10 9" IHC	1500	1200	
12" XXS	273,05	25,4	API 10000	API HUB CONN. N°22 11" IHC	1800	1300	

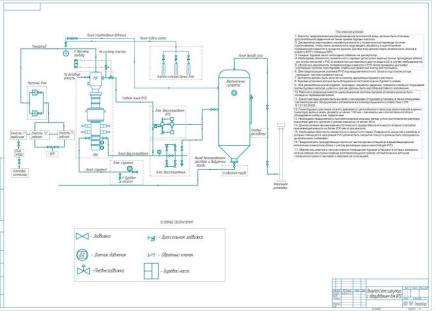
Схемы обвязки БРД

Наша компания представляет две схемы обвязки при бурении с регулированным давлением:

Открытая схема циркуляции:

Циркуляция производится по стандартному режиму циркуляции буровой установки.


Закрытая схема циркуляции:


В составе циркуляционной системы используется следующее оборудование:

4-х фазный сепаратор

Система очистки раствора с сито-гидроциклонной установкой и горизонтальной центрифугой

Блок технологических емкостей

Генеральный директор: Алинбеков Тахир Жусупович Тел. 8 (919) 843-03-24

Email: <u>at@png-technologies.ru</u> Главный инженер:

Сидоренко Алексей Александрович Тел. 8 (927) 700-25-89

Email: Sidorenko@png-technologies.ru

Главный механик:

Левин Александр Александрович Тел. 8 (903) 367-45-09

Email: <u>Levin@png-technologies.ru</u>

info@png-technologies.ru www.png-technologies.ru

Надеемся на взаимовыгодное сотрудничество!

Спасибо за внимание!